博客
关于我
714. 买卖股票的最佳时机含手续费
阅读量:789 次
发布时间:2019-03-25

本文共 1180 字,大约阅读时间需要 3 分钟。

在股票交易问题中,使用动态规划(DP)是一种有效的方法来找到最大利润。以下是一个优化后的解决方案,模仿了技术人员的写作风格,避免使用AI特有的表达方式。问题描述:我们需要计算从买入股票到卖出的过程中,扣除手续费后的最大利润。DP方法中,dp[i][0]表示第i天不持有股票的最大收益,dp[i][1]表示第i天持有股票的最大收益。通过这个状态机,我们可以跟踪每一天的交易状态。解决方案:因为买入时需要支付手续费,所以特殊处理。到达当天不持有股票的状态时,只能是前一天持有并且卖出,或者前一天不持有。此外,持有股票的时候,可能是今天从不持有变为持有,或者是从持有延续。初始化:dp[0][0] = 0:第0天不持有股票的收益为0。dp[0][1] = -fee - prices[0]:第0天持有股票的收益为第一天购入价格减去手续费。递推关系:当天不持有股票的状态:dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])当天持有股票的状态:dp[i][1] = max(dp[i-1][1], dp[i-1][0] - fee - prices[i])最终结果:返回dp[prices.size()-1][0],即最后一天不持有的最大收益。实现代码:#include 
using namespace std;class Solution {public: int maxProfit(vector
& prices, int fee) { vector
> dp(prices.size(), vector
(2)); dp[0][0] = 0; dp[0][1] = -fee - prices[0]; for(int i = 1; i < prices.size(); ++i) { dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i]); dp[i][1] = max(dp[i-1][1], dp[i-1][0] - fee - prices[i]); } return dp[prices.size()-1][0]; }};

这段代码通过动态规划计算了股票交易的最大利润。每一步根据前一天的状态决定当前天的操作,从而最大化利润。对于每一天,计算两种状态的利润:持有和不持有,并选择最优解。

这个方法的时间复杂度为O(n),空间复杂度为O(n),适合处理较长的股票价格序列。

转载地址:http://vvjuk.baihongyu.com/

你可能感兴趣的文章
ntko文件存取错误_苹果推送 macOS 10.15.4:iCloud 云盘文件夹共享终于来了
查看>>
ntp server 用法小结
查看>>
ntpdate 通过外网同步时间
查看>>
ntpdate同步配置文件调整详解
查看>>
NTPD使用/etc/ntp.conf配置时钟同步详解
查看>>
NTP及Chrony时间同步服务设置
查看>>
NTP服务器
查看>>
NTP配置
查看>>
NUC1077 Humble Numbers【数学计算+打表】
查看>>
NuGet Gallery 开源项目快速入门指南
查看>>
NuGet(微软.NET开发平台的软件包管理工具)在VisualStudio中的安装的使用
查看>>
nuget.org 无法加载源 https://api.nuget.org/v3/index.json 的服务索引
查看>>
Nuget~管理自己的包包
查看>>
NuGet学习笔记001---了解使用NuGet给net快速获取引用
查看>>
nullnullHuge Pages
查看>>
NullPointerException Cannot invoke setSkipOutputConversion(boolean) because functionToInvoke is null
查看>>
null可以转换成任意非基本类型(int/short/long/float/boolean/byte/double/char以外)
查看>>
Number Sequence(kmp算法)
查看>>
Numix Core 开源项目教程
查看>>
numpy
查看>>